Basic Refrigeration Principles

Most users normally associate refrigeration with cold and cooling, yet the practice of refrigeration engineering deals almost entirely with the transfer of heat. This seeming paradox is one of the most fundamental concepts that must be grasped to understand the workings of a refrigeration system.

Cold is really only the absence of heat, just as darkness is the absence of light, and dryness is the absence of moisture.

Temperature


Temperature is the scale used to measure the intensity of heat, the indicator that determines which way the heat energy will move. In the United States, temperature is normally measured in degrees Fahrenheit, but the Centigrade scale (sometimes termed Celsius) is widely used in other parts of the world. Both scales have two basic points in common, the freezing point of water, and the boiling point of water at sea level. Water freezes at 32° F. and O° C., and water boils at sea level at 212° F. and 100° C. On the Fahrenheit scale, the temperature difference between these two points is divided into 180 equal increments or degrees F., while on the Centigrade scale the temperature difference is divided into 100 equal increments or degrees C, The relation between Fahrenheit and Centigrade scales can always be established by the following formulas:

Fahrenheit = 1.8(Centigrade + 32°)
Centigrade= .556(Fahrenheit - 32°)

comparison-big.jpg
Katey Werner