Basic Refrigeration Principles

Most users normally associate refrigeration with cold and cooling, yet the practice of refrigeration engineering deals almost entirely with the transfer of heat. This seeming paradox is one of the most fundamental concepts that must be grasped to understand the workings of a refrigeration system.

Cold is really only the absence of heat, just as darkness is the absence of light, and dryness is the absence of moisture.

Effect of Fluid Flow on Heat Transfer

Heat transfer from a fluid through a tube wall or through metal fins is greatly affected by the action of the fluid in contact with the metal surface. As a general rule, the greater the velocity of flow and the more turbulent the flow, the greater will be the rate of heat transfer. Rapid boiling of an evaporating liquid will also increase the rate of heat transfer. Quiet liquid flow on the other hand, tends to allow an insulating film to form on the metal surface which resists heat flow, and reduces the rate of heat transfer.

Katey Werner