Basic Refrigeration Principles

Most users normally associate refrigeration with cold and cooling, yet the practice of refrigeration engineering deals almost entirely with the transfer of heat. This seeming paradox is one of the most fundamental concepts that must be grasped to understand the workings of a refrigeration system.

Cold is really only the absence of heat, just as darkness is the absence of light, and dryness is the absence of moisture.

Heat Transfer

The second important law of thermodynamics is that heat always travels from a warm object to a colder one. The rate of heat travel is in direct proportion to the temperature difference between the two bodies.

Assume that two steel halls are side by side in a perfectly insulated box. One ball weighs one pound and has a temperature of 400° F., while the second ball weighs 1,000 pounds and has a temperature of 390° F. The heat content of the larger ball is tremendously greater than the small one, but because of the temperature difference, heat will travel from the small ball to the large one until the temperatures equalize.

Heat can travel in any of three ways: radiation, conduction, or convection.

Radiation is the transfer of heat by waves similar to light waves or radio waves. For example, the sun's energy is transferred to the Earth by radiation. One need only step from the shade into direct sunlight to feel the impact of the heat waves, even though the temperature of the surrounding air is identical in both places. There is little radiation at low temperatures, and at small temperature differences, so radiation is of little importance in the actual refrigeration process. However, radiation to the refrigerated space or product from the outside environment, particularly the sun, may be a major factor in the refrigeration load.

Conduction is the flow of heat through a substance. Actual physical' contact is required for heat transfer to take place between two bodies by this means. Conduction is a highly efficient means of heat transfer as any service-person who has touched a piece of hot metal can testify.

Convection is the flow of heat by means of a fluid medium, either gas or liquid, normally air or water. Air may be heated by a furnace, and then discharged into a room to heat objects in the room by convection.

In a typical refrigeration application, heat normally will travel by a combination of processes, and the ability of a piece of equipment to transfer heat is referred to as the overall rate of heat transfer. While heat transfer cannot take place without a temperature difference, different materials vary in their ability to con-duct heat. Metal is a very good heat conductor, while asbestos has so much resistance to heat flow it can be used as insulation.

Katey Werner